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Of the three decision rules we discuss, perhaps the most familiar one is Γ-
Maximin2. This rule requires that the decision maker ranks a gamble by its lower
expected value, taken with respect to a closed, convex set of probabilities, P , and
then to choose an option from A whose lower expected value is maximum. This
decision rule (as simplified by the assumptions, above) was given a representation
in terms of a binary preference relation over Anscombe-Aumann horse lotteries
[2], has been discussed by, e.g., Section 4.7.6 of [1] and recently by [5], who de-
fend it as a form of Robust Bayesian decision theory. The Γ-Maximin decision
rule creates a preference ranking of options independent of the alternatives avail-
able in A : it is context independent in that sense. But Γ-Maximin corresponds to
a preference ranking that fails the so-called (von Neumann-Morgenstern’s) “In-
dependence” or (Savage’s) “Sure-thing” postulate of SEU theory. In Section 2 of
[15], we note that such theories suffer from sequential incoherence in particular
sequential decision problems.

The second decision rule that we consider, called E-admissibility (‘E’ for
“expectation”), was formulated in [8, 9]. E-admissibility constrains the decision
maker’s admissible choices to those gambles in A that are Bayes for at least one
probability P � P . That is, given a choice set A , the gamble f is E-admissible
on the condition that, for at least one P � P , f maximizes subjective expected
utility with respect to the options in A .3 Section 7.2 of [12]4 defends a precursor
to this decision rule in connection with cooperative group decision making. E-
admissibility does not support an ordering of options, real-valued or otherwise,
so that it is inappropriate to characterize E-admissibility by a ranking of gambles
independent of the set A of feasible options. However, the distinction between
options that are and are not E-admissible does support the “Independence” pos-
tulate. For example, if neither option f nor g is E-admissible in a given decision
problem A , then the convex combination, the mixed option h = α f � (1-α)g (0� α �

1) likewise is E-inadmissible when added to A � This is evident from the
basic SEU property: the expected utility of a convex combination of two gambles
is the corresponding weighted average of their separate expected utilities; hence,
for a given P � P the expected utility of the mixture of two gambles is bounded
above by the maximum of the two expected utilities. The assumption that neither
of two gambles is E-admissible entails that their mixture has P-expected utility
less than some E-admissible option in A .

The third decision rule we consider is called Maximality by Walley in [17]5,

2When outcomes are cast in terms of a (statistical) loss function, the rule is then Γ-Minimax:
rank options by their maximum expected risk and choose an option whose maximum expected risk is
minimum.

3Levi’s decision theory is lexicographic, in which the first consideration is E-admissibility, fol-
lowed by other considerations, e.g. what he calls a Security index. Here, we attend solely to E-
admissibility.

4Savage’s analysis of the decision problem depicted by his Figure 1, p. 123, and his rejection of
option b, p. 124 is the key point.

5There is, for our discussion here, a minor difference with Walley’s formulation of Maximality
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who appears to endorse it (p. 166). Maximality uses the strict partial order (above)
to fix the admissible gambles from A to be those that are not strictly preferred by
any other member of A . That is, f is a Maximal choice from A provided that
there is no other element g � A that, for each P � P , carries greater expected
utility than f does. Maximality (under different names) has been studied, for
example, in [6, 8, 10, 13, 16]. Evidently, the E-admissible gambles in a decision
problem are a subset of the Maximally admissible ones.

The three rules have different sets of admissible options. Here is a heuristic
illustration of that difference.

Example 1 Consider a binary-state decision problem, Ω = � ω1, ω2 
 , with three
feasible options. Option f yields an outcome worth 1 utile if state ω1 obtains and
an outcome worth 0 utiles if ω2 obtains. Option g is the mirror image of f and
yields an outcome worth 1 utile if ω2 obtains and an outcomes worth 0 utiles if
ω1 obtains. Option h is constant in value, yielding an outcome worth 0.4 utiles
regardless whether ω1 or ω2 obtains. Figure 1 graphs the expected utilities for
these three acts. Let P = � P: 0.25 � P(ω1) � 0.75 
 . The surface of Bayes solutions
is highlighted. The expected utility for options f and g each has the interval of
values [0.25, 0.75], whereas h of course has constant expected utility of 0.4. From
the choice set of these three options A = � f , g, h 
 the Γ-Maximin decision rule
determines that h is (uniquely) best, assigning it a value of 0.4, whereas f and g
each has a Γ-Maximin value of 0.25. By contrast, under E-admissibility, only the
option h is E-inadmissible from the trio. Either of f or g is E-admissible. And, as
no option is strictly preferred to any other by expectations with respect to P , all
three gambles are admissible under Maximality.

What normative considerations can be offered to distinguish among these
three rules? For example, all three rules are immune to a Dutch Book, in the
following sense:

Definition 1 Call an option favorable if it is uniquely admissible in a pairwise
choice against the status-quo of “no bet,” which we represent as the constant 0.

Proposition 1 For each of the three decision rules above, no finite combination
of favorable options can result in a Dutch Book, i.e., a sure loss.

Proof. Reason indirectly. Suppose that the sum of a finite set of favorable gam-
bles is negative in each state ω. Choose an element P from P . The probability
P is a convex combination of the extreme (0-1) probabilities, corresponding to a
convex combination of the finite partition by states. The expectation of a convex

involving null-events. Walley’s notion of Maximality requires, also, that an admissible gamble be
classically admissible, i.e., not weakly dominated with respect to state-payoffs. This means that, e.g.,
our Theorem 1(i) is slightly different in content from Walley’s corresponding result.



Schervish et al.: Extensions of Expected Utility Theory 341

Figure 1: Expected utilities for three acts in Example 1. The thicker line indicates
the surface of Bayes solutions.

combination of probabilities is the convex combination of the individual expec-
tations. This makes the P-expectation of the sum of the finite set of favorable
options negative. But the P-expectation of the sum cannot be negative unless at
least one of the finitely many gambles has a negative P-expectation. Then that
gamble cannot be favorable under any of the three decision rules. Thus, none of
these three decision rules is subject to sure loss. �

In this paper, we develop an additional criterion for contrasting these deci-
sion rules. In Section 2 we address the question of what operational content the
rules give to distinguishing among different (convex) sets of probabilities. That is,
we are concerned to understand which convex sets of probabilities are treated as
equivalent under a given decision rule. When do two convex sets of probabilities
lead to all the same admissible options for a given decision rule? Γ-Maximin and
Maximality are based solely on pairwise comparisons. Not so for E-admissibility.
Even when the choice set A of feasible options is convex (e.g., closed under mixed
strategies), these rules have distinct classes of admissible options.
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2 Gambles and pairwise choice rules

It is evident that for Γ-Maximin generally to satisfy Criterion 1, the convex set of
probabilities P must be closed. For an illustration why, if Example 1 is modified
so that P ����� P : 0 � 4 � P � ω1 � � 0 � 75 
 then, even though f and h both have the
same infimum, 0.4, of expectations with respect to P � , for each P � P �
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Definition 2 Let P be a convex set of probability vectors. We say that f � A is
Bayes with respect to P if there exists p � P such that Ep � f � � Ep � g � for all g � A .

Theorem 1 Let B be the set of all f � A such that f is Bayes with respect to P .
Suppose that g � A ! B . Assume either

(i) that P is closed, or

(ii) that A is finite and that P is open. That is,�"� p1 �����	��� pk � 1 � : � p1 �	�����	� pk � � P 

is an open subset of IRk � 1.

Then there exists h in the convex hull of B such that Ep � h �$# Ep � g � for all p � P .

Corollary 1 Assume that A is closed and convex. Let B be the set of all f � A
such that f is Bayes with respect to P . Suppose that g � A ! B is not Bayes with is is, � is,�
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Example 3 This example illustrates why we assume that P is closed in Theo-
rem 1(i). Let Ω consist of three states. Let

P � �"� p1 � p2 � p3 � : p2 � 2p1 for p1
�

0 � 2 
. �"� p1 � p2 � p3 � : p2
�

2p1 for 0 � 2 � p1
�

1 & 3 
 �
The set of acts A contains only the following three acts (each expressed as a
vector of its payoffs in the three states):

f1 � � 0 � 2 � 0 � 2 � 0 � 2 ���
f2 � � 1 � 0 � 0 ���
g � ��� 1 � 8 � 1 � 2 �	� 2 � �

Notice that Ep � f2 � is the highest of the three whenever p1 � 0 � 2, Ep � f1 � is the
highest whenever p1

�
0 � 2, and Ep � g � is never the highest. So, B �/� f1 � f2 
 and g

is not Bayes with respect to A . For each 0
� α �

1, we compute

Ep � α f1 '0� 1 � α � f2 � � p1 � 1 � α � ' 0 � 2α �
Ep � g � � � 2p1 ' p2 ' 0 � 2 �

Notice that Ep � α f1 '1� 1 � α � f2 � is strictly greater than Ep � g � if and only if p2 �� 3 � α � p1 � 0 � 2 � 1 � α � . There is no α such that this inequality holds for all p � P .

Remark 1 Note that is it irrelevant to this example that p2 � 0 for some p � P .

Definition 3 Say that two convex sets intersect all the same supporting hyper-
planes if they have the same closure and a supporting hyperplane intersects one
convex set if and only if it intersects the other.

In addition to showing that E-admissibility does not reduce to pairwisenotonj
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either set P or P 4 , consider the family of decision problems defined by the three-
way choices: A � ε �8� f1 � f2 � g � ε 
 , where g � ε is the act with payoffs � 1 � 8 � 1 � 2 �
ε � 0 � 2 � . For each ε # 0, only the pair � f1 � f2 
 is E-admissible from such a three-
way choice, with respect to each of the two convex sets of probabilities.

Likewise, in order to establish that the half-open line segment � D � B + belongs to
both sets, P and P 4 , consider the family of decision problems defined by the three-
way choices: A 9 ε �:� f1 � f2 � g 9 ε 
 , where g 9 ε is the act with payoffs � 1 � 8 � 1 � 2 ' ε ��� 2 � .
For each ε # 0, all three options are E-admissible with respect to each of the two
convex sets of probabilities.

However, in the decision problem with options A ��� f1 � f2 � g 
 , as shown above,
only the pair � f1 � f2 
 is E-admissible with respect to the convex set P , whereas all
three options are E-admissible with respect to the convex set P 4 .

By contrast, given a choice set, Maximality makes the same ruling about
which options are admissible from that choice set, regardless whether convex set
P or convex set P 4 is used. That is, Maximality cannot distinguish between these
two convex sets of probabilities in terms of admissibility of choices, as the two
convex sets of probabilities intersect all the same supporting hyperplanes.

3 Summary

The discussion here contrasts three decision rules that extend Expected Utility
and which apply when uncertainty is represented by a convex set of probabilities,
P , rather than when uncertainty is represented only by a single probability distri-
bution. The decision rules are: Γ-Maximin, Maximality, and E-admissibility. We
show that these decision rules have different operational content in terms of their
ability to distinguish different convex sets of probabilities. When do the admis-
sible choices differ for different convex sets of probabilities? Γ-Maximin is least
sensitive among the three in this regard. We show that, even when the option set
is convex, one decision rule (E-admissibility) distinguishes among more convex
sets than the other two. This is because
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 .; � α � c � � D implies � aα � ac � � D for all a � 0,; � α � c � � D implies � α � c � a � � D for all a # 0,

Also, for each � α � c � � D, c
�

0.

Proof. To see that � α � c � � D implies c
�

0, let 0 be the origin. Then α � 0 � 0 � c.
Define the following set

D0 �(�"� α � c � :α � x � c � for all x � C 
 � (1)

To see that D0 is convex, let � γ1 � d1 � and � γ2 � d2 � be in D0 and 0
� β �

1. Then, for
all x � C, � βγ1 '0* 1 � β + γ1 � � x � βd1 '0� 1 � β � d2 �
This means that β � γ1 � d1 � '1* 1 � β +<� γ2 � d2 � � D0, and D0 is convex. To see that D0

is closed, notice that D0 �>= x ? CDx, where Dx �3�"� α � c � : α � c � c 
 and each Dx

is closed. It is clear that D0 has the last two properties in the itemized list. For
the first condition, let E be the set defined in the first condition. It is clear that
C @ E. Suppose that there is x0 � E such that x0 A� C. Then there is a hyperplane
that separates � x0 
 from C. That is, there is γ � IRk and d such that γ � x � d for all
x � C and γ � x0 � d. It follows that � γ � d � � D0, but then x0 A� E, a contradiction.
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Assume that A is nonempty. Define D to be the set of all vectors in IRk 9 1 of the
form � aα � ad � b � with a � b � 0 and � α � d � � V. Then D ���"� α � d � � IRk 9 1 : α � x �
d � for all x � A 
 .

Proof. Let x0 � A, and define

C � � x � x0 :x � A 
 �
V � � �%� α � d � α � x0 � : � α � d � � V 
 �

It follows that
C �(� x � IRk :α � x � c � for all � α � c � � V � 
 � (3)

and C contains the origin and is a closed convex set. Define D1 �-�"� α � d � α � x0 � :� α � d � � D 
 . In other words, D1 is the convex closed convex set of all vectors in
IRk 9 1 of the form � aα � ac
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So, for all x � Hg,
ch # α �h x � ch � Ep � h � ' Ep � g ���

It follows that, for all p � P , Ep � h �%# Ep � g � .
(ii) Define U , C � , V , A, and Hg e
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in a transfinite induction as follows. At each successor ordinal γ ' 1, find hγ 9 1 � C
such that Ep � hγ 9 1 �7# Ep � hγ � for all p � P . At a countable limit ordinal γ choose
any countable sequence � γn 
 ∞

n � 1 of ordinals that is cofinal with γ. By the induction
hypothesis, Ep � hγi � � Ep � hγ j � for all p � P if i � j. The sequence � hγn 
 ∞

n � 1 belongs
to the closed bounded set A , hence it has a limit hγ and

Ep � hγ � � lim
n N ∞

Ep � hγn � � sup
n

Ep � hγn ���
for all p, and hence does,
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